Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474019

ABSTRACT

Alzheimer's Disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory loss and cognitive impairment, affecting 35 million individuals worldwide. Intracerebroventricular (ICV) injection of low to moderate doses of streptozotocin (STZ) in adult male Wistar rats can reproduce classical physiopathological hallmarks of AD. This biological model is known as ICV-STZ. Most studies are focused on the description of behavioral and morphological aspects of the ICV-STZ model. However, knowledge regarding the molecular aspects of the ICV-STZ model is still incipient. Therefore, this work is a first attempt to provide a wide proteome description of the ICV-STZ model based on mass spectrometry (MS). To achieve that, samples from the pre-frontal cortex (PFC) and hippocampus (HPC) of the ICV-STZ model and control (wild-type) were used. Differential protein abundance, pathway, and network analysis were performed based on the protein identification and quantification of the samples. Our analysis revealed dysregulated biological pathways implicated in the early stages of late-onset Alzheimer's disease (LOAD), based on differentially abundant proteins (DAPs). Some of these DAPs had their mRNA expression further investigated through qRT-PCR. Our results shed light on the AD onset and demonstrate the ICV-STZ as a valid model for LOAD proteome description.


Subject(s)
Alzheimer Disease , Rats , Male , Animals , Alzheimer Disease/metabolism , Rats, Wistar , Streptozocin , Proteome , Proteomics , Disease Models, Animal , Maze Learning
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256255

ABSTRACT

SpliceProt 2.0 is a public proteogenomics database that aims to list the sequence of known proteins and potential new proteoforms in human, mouse, and rat proteomes. This updated repository provides an even broader range of computationally translated proteins and serves, for example, to aid with proteomic validation of splice variants absent from the reference UniProtKB/SwissProt database. We demonstrate the value of SpliceProt 2.0 to predict orthologous proteins between humans and murines based on transcript reconstruction, sequence annotation and detection at the transcriptome and proteome levels. In this release, the annotation data used in the reconstruction of transcripts based on the methodology of ternary matrices were acquired from new databases such as Ensembl, UniProt, and APPRIS. Another innovation implemented in the pipeline is the exclusion of transcripts predicted to be susceptible to degradation through the NMD pathway. Taken together, our repository and its applications represent a valuable resource for the proteogenomics community.


Subject(s)
Proteogenomics , Proteomics , Rats , Mice , Humans , Animals , Databases, Protein , Knowledge Bases , Proteome/genetics
3.
Pathogens ; 11(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365024

ABSTRACT

RNA sequencing (RNA-Seq) and mass-spectrometry-based proteomics data are often integrated in proteogenomic studies to assist in the prediction of eukaryote genome features, such as genes, splicing, single-nucleotide (SNVs), and single-amino-acid variants (SAAVs). Most genomes of parasite nematodes are draft versions that lack transcript- and protein-level information and whose gene annotations rely only on computational predictions. Angiostrongylus costaricensis is a roundworm species that causes an intestinal inflammatory disease, known as abdominal angiostrongyliasis (AA). Currently, there is no drug available that acts directly on this parasite, mostly due to the sparse understanding of its molecular characteristics. The available genome of A. costaricensis, specific to the Costa Rica strain, is a draft version that is not supported by transcript- or protein-level evidence. This study used RNA-Seq and MS/MS data to perform an in-depth annotation of the A. costaricensis genome. Our prediction improved the reference annotation with (a) novel coding and non-coding genes; (b) pieces of evidence of alternative splicing generating new proteoforms; and (c) a list of SNVs between the Brazilian (Crissiumal) and the Costa Rica strain. To the best of our knowledge, this is the first time that a multi-omics approach has been used to improve the genome annotation of A. costaricensis. We hope this improved genome annotation can assist in the future development of drugs, kits, and vaccines to treat, diagnose, and prevent AA caused by either the Brazil strain (Crissiumal) or the Costa Rica strain.

4.
Cells ; 10(7)2021 06 23.
Article in English | MEDLINE | ID: mdl-34201730

ABSTRACT

Alternative splicing (AS) may increase the number of proteoforms produced by a gene. Alzheimer's disease (AD) is a neurodegenerative disease with well-characterized AS proteoforms. In this study, we used a proteogenomics strategy to build a customized protein sequence database and identify orthologous AS proteoforms between humans and mice on publicly available shotgun proteomics (MS/MS) data of the corpus callosum (CC) and olfactory bulb (OB). Identical proteotypic peptides of six orthologous AS proteoforms were found in both species: PKM1 (gene PKM/Pkm), STXBP1a (gene STXBP1/Stxbp1), Isoform 3 (gene HNRNPK/Hnrnpk), LCRMP-1 (gene CRMP1/Crmp1), SP3 (gene CADM1/Cadm1), and PKCßII (gene PRKCB/Prkcb). These AS variants were also detected at the transcript level by publicly available RNA-Seq data and experimentally validated by RT-qPCR. Additionally, PKM1 and STXBP1a were detected at higher abundances in a publicly available MS/MS dataset of the AD mouse model APP/PS1 than its wild type. These data corroborate other reports, which suggest that PKM1 and STXBP1a AS proteoforms might play a role in amyloid-like aggregate formation. To the best of our knowledge, this report is the first to describe PKM1 and STXBP1a overexpression in the OB of an AD mouse model. We hope that our strategy may be of use in future human neurodegenerative studies using mouse models.


Subject(s)
Alternative Splicing/genetics , Alzheimer Disease/genetics , Brain/metabolism , Proteogenomics , Amino Acid Sequence , Animals , Databases, Protein , Disease Models, Animal , Exons/genetics , Humans , Male , Mice, Inbred C57BL , Peptides/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Seq , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...